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ABSTRACT 

A novel method is introduced for automatic mix recreation using timbral classification 
techniques and an optimization algorithm.  This approach uses the Euclidean distance between 
modified Spectral Histograms to calculate the distance between a mix and a target sound and 
uses a genetic optimization algorithm to figure out the best coefficients for that mix.  The 
implementation has been shown to successfully recreate multitrack mixes accurately and may 
pave the way towards the automatic mixing of novel multitrack sessions based on a desired 
target sound. 

 

1. INTRODUCTION 

The line between content producers and 
consumers is blurring more rapidly by the day.  
This can be attributed to two major factors-- 

the ease of access to information via the 
internet and the ever-lowering bar of entry.  
Not even a decade ago, basic audio editing and 
composition was relegated to top-of-the-line 
computers with expensive outboard gear or 
dedicated hardware; today, such features are 
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available even on entry-level computers in 
ever-shrinking sizes and price points. 

Conversely, computers are capable of handling 
more and more audiovisual information than 
ever before.  Audio editing software on higher-
end computers today can handle the recording 
and playback of dozens or even hundreds of 
audio tracks with effects on each of them with 
ease. 

Whether you are a novice user trying to make 
edits and mix music into your latest podcast or 
you are an expert music editor trying to 
manage a hundred tracks in a professional 
recording, you will at some point be faced 
with dealing with a daunting amount of data. 
The field of music information retrieval (MIR) 
is developing tools that may help with this. A 
system that extracts relevant features from the 
incoming audio signal and adjusts its presets 
based on those features would represent a 
dramatic leap over the static presets commonly 
found in recording software.  Years ago, the 
notion of a computer making decisions based 
on such things as recording style and genre 
seemed far-fetched; now, thanks to great leaps 
made in timbral similarity and music 
identification and classification tasks, this does 
not seem so far off. 

2. FRAMEWORK 

2.1. Overview 

This paper presents a novel approach to 
automatically mixing a multitrack recording 
session.  

The approach taken in this paper is unique in 
that it does not directly analyze the features of 
each track in a recording at the mixing stage; 
rather, it mixes by calculating the similarity of 
the mixes it creates to a target sound.  This 

approach is elegant in that it doesn’t require 
knowledge of the different types of tracks that 
may be encountered in the mixing task.  This 
means that a completely unknown set of 
sounds may be mixed using only the target 
sound.   

The mixer implementation applies a gain 
coefficient to each track and then sums each 
track together: 

 (1) 

where n is the total number of tracks in the 
mix, tracki is the current track, and αi is the 
gain to be applied to the current track. 

2.2. Timbral Similarity 

Timbral similarity is used in everything from 
music recommendation engines to music 
identification systems.  One measure of 
timbral similarity, the Spectral Histogram 
(SH), is a histogram of the number of times 
loudness levels have been exceeded across 
frequency bands [1]. The frequency bands are 
defined by the critical bands of the Bark scale 
and the loudness levels are measured in sones, 
both of which are psychoacoustic measures: 
the Bark scale is split up into frequency bands 
that correspond to the critical bands of human 
hearing, and the sone is a measure of 
perceived loudness.  

A typical Spectral Histogram is shown in 
Figure 1, with the Bark bands across the 
vertical axis and the loudness levels on the 
horizontal axis. 
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Fig 1. Spectral Histogram  

The timbral similarity of two sounds can be 
classified by calculating the distance between 
two SHs.  The Euclidean distance is taken 
between the Spectral Histograms of a mix and 
the target mix: 

 (2) 

This distance metric is used as the genetic 
algorithm’s cost function to figure out the best 
gain coefficients for each track so that the mix 
sounds as close to the target mix as possible.  

Elias Pampalk’s MA Toolbox was used in the 
calculation of the Spectral Histogram [2].  The 
SH calculation provided by the MA Toolbox 
was modified by removing the normalization 
and scaling the calculation by the overall mean 
loudness of the mix.  This allowed the 
Euclidean distance between the SHs to 
accurately locate parameters used in two-track 
mixing experiments that were used to 
determine an ideal cost function. 

2.3. Genetic Optimization 

2.3.1. Overview 

Genetic algorithms (GAs) model their systems 
just like genes in a biological system, and the 
genes undergo a number of transformations 
like mutation and crossover just as they do 
through sexual reproduction in the living 
world.  Genetic optimization has been shown 
to be very successful at navigating unwieldy 
search spaces such as search spaces with many 
local minima that would confuse normal hill-
climbing optimization algorithms. 

A toolbox for genetic optimization was used in 
this implementation.  The “Genetic Algorithm 
Optimization Toolbox” (GAOT) implements a 
genetic optimization function as well as a 
number of other functions used by the genetic 
algorithm for mutation, crossover, and 
selection.  It also provides a framework for 
customizing each of these functions as needed 
[3].  Each component of the system is 
described below. 

2.3.2. Similar Work 

Similar work to the automatic mixing problem 
has been performed on estimating the 
parameters for FM synthesis.  Andrew Horner 
et al use a genetic algorithm to adjust the 
parameters of FM synthesis to closely match 
the characteristics of an acoustic signal [4].  
Tan and Lim also successfully found 
parameters for double FM synthesis using 
genetic annealing, a variant on genetic 
optimization [5].  In both groups’ experiments, 
they compared the harmonics of the acoustic 
sounds that they were trying to model to the 
harmonics generated by the FM synthesis as 
the cost function.  This is analogous to the 
automatic mixing task in that both papers use a 
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GA to optimize the distance between a 
system’s output and a known target sound. 

2.3.3. Representation 

Just like how the base pairs in a sequence of 
DNA make up genes that define an organism’s 
attributes, a means of encoding information 
about a system is needed to serve as the 
genetic algorithm’s ‘DNA’. 

Since this mixing task’s goal is to set the 
proper gain values for each track, a mix is 
represented as the sequence of gains to be 
applied to each track.  The gain was defined in 
voltage change that would be applied to each 
track; i.e. a gain value of 1 would indicate no 
gain change and a gain of 0.5 would indicate a 
-6dB gain applied to the track. 

For every iteration of the genetic algorithm, 
each mix in a population is calculated by 
mixing the tracks as described in equation (1).  
The cost function is then utilized to calculate 
the distance between the resulting mix and the 
target mix; this cost is recorded and used by 
the GA’s selection function. 

2.3.4. Initialization 

Initialization in a GA typically assigns all the 
individuals of a population to random values 
within a known range.  This is partly 
responsible for the ability of the GA to search 
out large and uneven spaces for the globally 
optimal solution.  In the case of the automatic 
mixing project, the bounds of the variables 
define the dynamic range of the signal; for 
example, they could be defined as [0.001 1.5] 
to allow for a -60dB to +3.5dB range.  The 
gains are randomly assigned over this range 
but a future improvement to this algorithm 
could analyze each track in the mix to provide 
a more educated guess at initialization. 

2.3.5. Evolution 

An initial population is created of a 
predetermined size.  The genetic optimization 
function then takes that population and 
performs a number of operations on it to 
produce new generations of viable populations 
until a termination criterion is reached.  Since 
the maximum cost achieved by the GA is 
dependent on a wide array of factors, in 
particular the number of tracks being mixed, 
an ideal maximum cost varies from task to task 
and as such a fixed number of generations was 
used as the termination criterion. 

2.3.6. Reproduction Functions 

For each generation, the GA applies crossover 
and mutation operators to members of the 
population at a specified rate.  In biology, 
crossover and mutation are responsible for 
introducing variations in offspring. 

Crossover 

Crossover provides for variation in offspring 
by transferring portions of one parent’s genetic 
material to the other parent’s.  The crossover 
function used utilizes information about each 
parent’s fitness as a heuristic for determining 
which parent provides the genetic material for 
crossover and how much material should be 
used in the crossover. 

Mutation 

Mutation will randomly alter one individual’s 
genes to be within specified bounds.  The 
mutation function used selects an amount of 
mutation from a probability distribution.  This 
exploits the robust global search features of a 
typical genetic algorithm; as the number of 
generations reaches a maximum number of 
generations, the amount of change introduced 
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by the mutation can decrease so a search for a 
local minimum rather than the global 
minimum is performed. 

2.3.7. Selection 

Crossover and mutation result in offspring 
with variable viability; it is the job of the 
selection function to choose which offspring 
survive until the next generation.  The 
selection function ranks the individuals in a 
population based on their fitness level, which 
is calculated by the cost function.  It then 
decides which members survive until the next 
generation.  

3. TESTS 

3.1. Test Corpus 

A major difficulty in this project was 
procuring an adequate corpus of data for 
testing and development.  The problem is 
twofold: one issue is the lack of freely 
available multitrack recording sessions, and 
the other is exchanging data between 
proprietary recording software and MATLAB.  
A personal collection of recordings was 
primarily used for the project’s development, 
and each session had to be prepared track-by-
track into continuous WAV files so they could 
be read into MATLAB. 

Obviously this field of research could benefit 
greatly from an open repository of recordings 
as well as cross-platform libraries for 
interpreting those files.  Hopefully this dearth 
of data will change as more people become 
aware of this effort and collaborate on sharing 
recordings as well as developing interoperable 
file formats. 

3.2. Methodology 

A set of tests was created to determine the 
effect of number of tracks and total number of 
generations on the mixing algorithm’s 
efficacy. 

A number of tracks was randomly selected 
from a 10-track multitrack rock recording.  
Twenty random mixes containing four 
randomly selected tracks and twenty random 
mixes containing eight randomly selected 
tracks were produced.  The gains used to 
generate each mix were recorded and stored as 
the target gains.  Each of these mixes was then 
used as the target for the automatic mixing 
system.  The same combination of four or 
eight tracks as the target was fed into the 
system and allowed to run for a number of 
generations. 

4. RESULTS 

As expected, adding more tracks to a mix 
degrades the performance of the mixing 
algorithm.  Furthermore, increasing the 
maximum number of generations that the 
mixing algorithm is allowed to run increases 
its performance. 

 
 
Fig 2. Automatic mixing performance of 4 
track (top) and 8 track (bottom) versus 
maximum generations 
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As the number of generations increases, the 
disparity in performance between the smaller 
set of tracks (4) and the larger set of tracks (8) 
decreases.  The performance of the GA levels 
off as the number of generations increases; at 
this point, the region of the global minimum in 
the search space has been found and the GA is 
exploring that area to find the optimal mix. 

When run for fewer generations, the quality of 
the results from the automatic mixing varies 
widely.  This can be attributed to the random 
initialization of the gains for each track; 
sometimes, the initial population generates an 
individual that is very close to the target, and 
other times it takes a number of generations to 
get close to the global minimum of the search 
space.  A more refined initialization system 
could potentially help minimize this disparity. 

The behavior of the mixing function as well as 
the narrowing down of the global search space 
to a localized search is apparent when 
watching the evolution of the mix as a bar 
graph, as you could watch the faders on an 
automated mixing console.  The search starts 
out wide as a number of combinations are 
explored for a global minimum; then, as the 
maximum number of generations is reached, 
the search moves in smaller increments.  The 
best-performing situation tested (4 tracks, 50 
generations) comes quite close to hitting its 
target, indicated by the solid black lines in the 
figures.   

 
Fig 3. Automatic mixing of 4 tracks.  From 
left to right: 1 generation, 4 generations, 
and 50 generations 

Performance of the mixing algorithm with an 
eight track recording was not quite as good as 
with the four track recording, but it is still 
apparent that the mixes are approaching the 
target.  As with the four track recording, the 
search for the eight track mix started off on a 
random course.  By the end, it had recreated a 
reasonably close approximation to the actual 
mix, with one notable miss: 

 
Fig 3. Automatic mixing of 8 tracks.  From 
top left to bottom right: 1 generation, 6 
generations, 24 generations, 50 generations 

This was a fairly common occurrence when 
dealing with larger numbers of tracks-- the 
mixing algorithm appeared to ‘lock on’ to 
most but not all of the tracks and was unable to 
figure out others.  Track 5, identified by the 
arrow in Figure 3, is a snare drum track.  The 
target gain for this track was randomly 
generated to be .0067, or -43 dB.  The final 
effect of the snare drum track at -43 dB on the 
target mix may have been too quiet to be 
perceptible by the cost function. 

These results may also highlight a critical 
shortcoming in the approach of automatic 
mixing by evaluating the entire mix rather than 
on a track-by-track basis.  The fact that track 
5’s gain is set much higher than the target 
value yet changing its value doesn’t appear to 
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have much of an effect on the overall mix’s 
cost could be because of the percussive nature 
of the track.  The vast majority of the energy 
of the snare track comes from each hit, with 
the energy rapidly decaying after the hit.  The 
hits occur relatively infrequently when 
compared to a more continuous sound such as 
the strumming of a guitar or a vocal melody.  
Properly handling a sparse track such as this in 
an automatic mixing task may require a track-
by-track evaluation and initialization before 
the mixing takes place. 

5. FUTURE WORK 

The field of Music Information Retrieval has 
developed a number of techniques that could 
vastly improve the intuitiveness, efficiency, 
and utility of recording software.  A 
framework for one application of this was 
presented here.  This system for the automatic 
mixing of a multitrack recording combines a 
MIR-derived timbral classification system 
with a machine learning algorithm.  The 
automatic mixing system has been shown to 
successfully recreate existing mixes under a 
number of situations with varying degrees of 
success; it remains to be seen what it will take 
to extend this system to creating novel mixes 
based on unknown targets. 

This paper sought to shed light on the 
promising integration of MIR and the 
recording studio.  It is the author’s hope that 
this will lead to a more widespread effort 
towards achieving a ‘smarter’ recording 
studio.  The development of an open file 
format for recording session exchange and 
libraries to support such a format across a 
number of platforms would be helpful to both 
the research community as well as software 
companies that create professional recording 
software.  Furthermore, a collaborative 

repository of multitrack recording sessions 
would be of great use to all those who are 
pursuing this line of research. 

6. RESOURCES 

All code developed for this research thus far 
has been developed in MATLAB and is 
available to download on the NYU Music 
Technology Research website: 

http://www.nyu.edu/projects/mtr/ 

The code used in this project requires both 
Elias Pampalk’s MA Toolbox and Chris 
Houck’s GAOT toolbox, both of which are 
freely available for download online.  

MA Toolbox: http://www.pampalk.at/ma/  

GAOT: 
http://www.ise.ncsu.edu/mirage/GAToolBox/g
aot/  
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