
Audio Engineering Society

Convention Paper
Presented at the 124th Convention

2008 May 17–20 Amsterdam, The Netherlands

The papers at this Convention have been selected on the basis of a submitted abstract and extended precis that have been peer
reviewed by at least two qualified anonymous reviewers. This convention paper has been reproduced from the author's advance
manuscript, without editing, corrections, or consideration by the Review Board. The AES takes no responsibility for the contents.
Additional papers may be obtained by sending request and remittance to Audio Engineering Society, 60 East 42nd Street, New
York, New York 10165-2520, USA; also see www.aes.org. All rights reserved. Reproduction of this paper, or any portion thereof,
is not permitted without direct permission from the Journal of the Audio Engineering Society.

A Framework for Automatic Mixing Using
Timbral Similarity Measures and Genetic

Optimization
Bennett A. Kolasinski

 Music Technology, New York University

New York, NY 10003, USA
bak282@nyu.edu

ABSTRACT

A novel method is introduced for automatic mix recreation using timbral classification
techniques and an optimization algorithm. This approach uses the Euclidean distance between
modified Spectral Histograms to calculate the distance between a mix and a target sound and
uses a genetic optimization algorithm to figure out the best coefficients for that mix. The
implementation has been shown to successfully recreate multitrack mixes accurately and may
pave the way towards the automatic mixing of novel multitrack sessions based on a desired
target sound.

1. INTRODUCTION

The line between content producers and
consumers is blurring more rapidly by the day.
This can be attributed to two major factors--

the ease of access to information via the
internet and the ever-lowering bar of entry.
Not even a decade ago, basic audio editing and
composition was relegated to top-of-the-line
computers with expensive outboard gear or
dedicated hardware; today, such features are

AES

Kolasinski Framework for Automatic Mixing

AES 124th Convention, Amsterdam, The Netherlands, 2008 May 17–20

Page 2 of 8

available even on entry-level computers in
ever-shrinking sizes and price points.

Conversely, computers are capable of handling
more and more audiovisual information than
ever before. Audio editing software on higher-
end computers today can handle the recording
and playback of dozens or even hundreds of
audio tracks with effects on each of them with
ease.

Whether you are a novice user trying to make
edits and mix music into your latest podcast or
you are an expert music editor trying to
manage a hundred tracks in a professional
recording, you will at some point be faced
with dealing with a daunting amount of data.
The field of music information retrieval (MIR)
is developing tools that may help with this. A
system that extracts relevant features from the
incoming audio signal and adjusts its presets
based on those features would represent a
dramatic leap over the static presets commonly
found in recording software. Years ago, the
notion of a computer making decisions based
on such things as recording style and genre
seemed far-fetched; now, thanks to great leaps
made in timbral similarity and music
identification and classification tasks, this does
not seem so far off.

2. FRAMEWORK

2.1. Overview

This paper presents a novel approach to
automatically mixing a multitrack recording
session.

The approach taken in this paper is unique in
that it does not directly analyze the features of
each track in a recording at the mixing stage;
rather, it mixes by calculating the similarity of
the mixes it creates to a target sound. This

approach is elegant in that it doesn’t require
knowledge of the different types of tracks that
may be encountered in the mixing task. This
means that a completely unknown set of
sounds may be mixed using only the target
sound.

The mixer implementation applies a gain
coefficient to each track and then sums each
track together:

 (1)

where n is the total number of tracks in the
mix, tracki is the current track, and αi is the
gain to be applied to the current track.

2.2. Timbral Similarity

Timbral similarity is used in everything from
music recommendation engines to music
identification systems. One measure of
timbral similarity, the Spectral Histogram
(SH), is a histogram of the number of times
loudness levels have been exceeded across
frequency bands [1]. The frequency bands are
defined by the critical bands of the Bark scale
and the loudness levels are measured in sones,
both of which are psychoacoustic measures:
the Bark scale is split up into frequency bands
that correspond to the critical bands of human
hearing, and the sone is a measure of
perceived loudness.

A typical Spectral Histogram is shown in
Figure 1, with the Bark bands across the
vertical axis and the loudness levels on the
horizontal axis.

Kolasinski Framework for Automatic Mixing

AES 124th Convention, Amsterdam, The Netherlands, 2008 May 17–20

Page 3 of 8

Fig 1. Spectral Histogram

The timbral similarity of two sounds can be
classified by calculating the distance between
two SHs. The Euclidean distance is taken
between the Spectral Histograms of a mix and
the target mix:

 (2)

This distance metric is used as the genetic
algorithm’s cost function to figure out the best
gain coefficients for each track so that the mix
sounds as close to the target mix as possible.

Elias Pampalk’s MA Toolbox was used in the
calculation of the Spectral Histogram [2]. The
SH calculation provided by the MA Toolbox
was modified by removing the normalization
and scaling the calculation by the overall mean
loudness of the mix. This allowed the
Euclidean distance between the SHs to
accurately locate parameters used in two-track
mixing experiments that were used to
determine an ideal cost function.

2.3. Genetic Optimization

2.3.1. Overview

Genetic algorithms (GAs) model their systems
just like genes in a biological system, and the
genes undergo a number of transformations
like mutation and crossover just as they do
through sexual reproduction in the living
world. Genetic optimization has been shown
to be very successful at navigating unwieldy
search spaces such as search spaces with many
local minima that would confuse normal hill-
climbing optimization algorithms.

A toolbox for genetic optimization was used in
this implementation. The “Genetic Algorithm
Optimization Toolbox” (GAOT) implements a
genetic optimization function as well as a
number of other functions used by the genetic
algorithm for mutation, crossover, and
selection. It also provides a framework for
customizing each of these functions as needed
[3]. Each component of the system is
described below.

2.3.2. Similar Work

Similar work to the automatic mixing problem
has been performed on estimating the
parameters for FM synthesis. Andrew Horner
et al use a genetic algorithm to adjust the
parameters of FM synthesis to closely match
the characteristics of an acoustic signal [4].
Tan and Lim also successfully found
parameters for double FM synthesis using
genetic annealing, a variant on genetic
optimization [5]. In both groups’ experiments,
they compared the harmonics of the acoustic
sounds that they were trying to model to the
harmonics generated by the FM synthesis as
the cost function. This is analogous to the
automatic mixing task in that both papers use a

Kolasinski Framework for Automatic Mixing

AES 124th Convention, Amsterdam, The Netherlands, 2008 May 17–20

Page 4 of 8

GA to optimize the distance between a
system’s output and a known target sound.

2.3.3. Representation

Just like how the base pairs in a sequence of
DNA make up genes that define an organism’s
attributes, a means of encoding information
about a system is needed to serve as the
genetic algorithm’s ‘DNA’.

Since this mixing task’s goal is to set the
proper gain values for each track, a mix is
represented as the sequence of gains to be
applied to each track. The gain was defined in
voltage change that would be applied to each
track; i.e. a gain value of 1 would indicate no
gain change and a gain of 0.5 would indicate a
-6dB gain applied to the track.

For every iteration of the genetic algorithm,
each mix in a population is calculated by
mixing the tracks as described in equation (1).
The cost function is then utilized to calculate
the distance between the resulting mix and the
target mix; this cost is recorded and used by
the GA’s selection function.

2.3.4. Initialization

Initialization in a GA typically assigns all the
individuals of a population to random values
within a known range. This is partly
responsible for the ability of the GA to search
out large and uneven spaces for the globally
optimal solution. In the case of the automatic
mixing project, the bounds of the variables
define the dynamic range of the signal; for
example, they could be defined as [0.001 1.5]
to allow for a -60dB to +3.5dB range. The
gains are randomly assigned over this range
but a future improvement to this algorithm
could analyze each track in the mix to provide
a more educated guess at initialization.

2.3.5. Evolution

An initial population is created of a
predetermined size. The genetic optimization
function then takes that population and
performs a number of operations on it to
produce new generations of viable populations
until a termination criterion is reached. Since
the maximum cost achieved by the GA is
dependent on a wide array of factors, in
particular the number of tracks being mixed,
an ideal maximum cost varies from task to task
and as such a fixed number of generations was
used as the termination criterion.

2.3.6. Reproduction Functions

For each generation, the GA applies crossover
and mutation operators to members of the
population at a specified rate. In biology,
crossover and mutation are responsible for
introducing variations in offspring.

Crossover

Crossover provides for variation in offspring
by transferring portions of one parent’s genetic
material to the other parent’s. The crossover
function used utilizes information about each
parent’s fitness as a heuristic for determining
which parent provides the genetic material for
crossover and how much material should be
used in the crossover.

Mutation

Mutation will randomly alter one individual’s
genes to be within specified bounds. The
mutation function used selects an amount of
mutation from a probability distribution. This
exploits the robust global search features of a
typical genetic algorithm; as the number of
generations reaches a maximum number of
generations, the amount of change introduced

Kolasinski Framework for Automatic Mixing

AES 124th Convention, Amsterdam, The Netherlands, 2008 May 17–20

Page 5 of 8

by the mutation can decrease so a search for a
local minimum rather than the global
minimum is performed.

2.3.7. Selection

Crossover and mutation result in offspring
with variable viability; it is the job of the
selection function to choose which offspring
survive until the next generation. The
selection function ranks the individuals in a
population based on their fitness level, which
is calculated by the cost function. It then
decides which members survive until the next
generation.

3. TESTS

3.1. Test Corpus

A major difficulty in this project was
procuring an adequate corpus of data for
testing and development. The problem is
twofold: one issue is the lack of freely
available multitrack recording sessions, and
the other is exchanging data between
proprietary recording software and MATLAB.
A personal collection of recordings was
primarily used for the project’s development,
and each session had to be prepared track-by-
track into continuous WAV files so they could
be read into MATLAB.

Obviously this field of research could benefit
greatly from an open repository of recordings
as well as cross-platform libraries for
interpreting those files. Hopefully this dearth
of data will change as more people become
aware of this effort and collaborate on sharing
recordings as well as developing interoperable
file formats.

3.2. Methodology

A set of tests was created to determine the
effect of number of tracks and total number of
generations on the mixing algorithm’s
efficacy.

A number of tracks was randomly selected
from a 10-track multitrack rock recording.
Twenty random mixes containing four
randomly selected tracks and twenty random
mixes containing eight randomly selected
tracks were produced. The gains used to
generate each mix were recorded and stored as
the target gains. Each of these mixes was then
used as the target for the automatic mixing
system. The same combination of four or
eight tracks as the target was fed into the
system and allowed to run for a number of
generations.

4. RESULTS

As expected, adding more tracks to a mix
degrades the performance of the mixing
algorithm. Furthermore, increasing the
maximum number of generations that the
mixing algorithm is allowed to run increases
its performance.

Fig 2. Automatic mixing performance of 4
track (top) and 8 track (bottom) versus
maximum generations

-0.0300

-0.0225

-0.0150

-0.0075

0

1 5 10 15 25 50

Mean Costs vs. Max Generations

M
e
a
n
 C

o
s
t

(0
 =

 p
e
rf

e
c
t

m
ix

)

Max Generations

Kolasinski Framework for Automatic Mixing

AES 124th Convention, Amsterdam, The Netherlands, 2008 May 17–20

Page 6 of 8

As the number of generations increases, the
disparity in performance between the smaller
set of tracks (4) and the larger set of tracks (8)
decreases. The performance of the GA levels
off as the number of generations increases; at
this point, the region of the global minimum in
the search space has been found and the GA is
exploring that area to find the optimal mix.

When run for fewer generations, the quality of
the results from the automatic mixing varies
widely. This can be attributed to the random
initialization of the gains for each track;
sometimes, the initial population generates an
individual that is very close to the target, and
other times it takes a number of generations to
get close to the global minimum of the search
space. A more refined initialization system
could potentially help minimize this disparity.

The behavior of the mixing function as well as
the narrowing down of the global search space
to a localized search is apparent when
watching the evolution of the mix as a bar
graph, as you could watch the faders on an
automated mixing console. The search starts
out wide as a number of combinations are
explored for a global minimum; then, as the
maximum number of generations is reached,
the search moves in smaller increments. The
best-performing situation tested (4 tracks, 50
generations) comes quite close to hitting its
target, indicated by the solid black lines in the
figures.

Fig 3. Automatic mixing of 4 tracks. From
left to right: 1 generation, 4 generations,
and 50 generations

Performance of the mixing algorithm with an
eight track recording was not quite as good as
with the four track recording, but it is still
apparent that the mixes are approaching the
target. As with the four track recording, the
search for the eight track mix started off on a
random course. By the end, it had recreated a
reasonably close approximation to the actual
mix, with one notable miss:

Fig 3. Automatic mixing of 8 tracks. From
top left to bottom right: 1 generation, 6
generations, 24 generations, 50 generations

This was a fairly common occurrence when
dealing with larger numbers of tracks-- the
mixing algorithm appeared to ‘lock on’ to
most but not all of the tracks and was unable to
figure out others. Track 5, identified by the
arrow in Figure 3, is a snare drum track. The
target gain for this track was randomly
generated to be .0067, or -43 dB. The final
effect of the snare drum track at -43 dB on the
target mix may have been too quiet to be
perceptible by the cost function.

These results may also highlight a critical
shortcoming in the approach of automatic
mixing by evaluating the entire mix rather than
on a track-by-track basis. The fact that track
5’s gain is set much higher than the target
value yet changing its value doesn’t appear to

Kolasinski Framework for Automatic Mixing

AES 124th Convention, Amsterdam, The Netherlands, 2008 May 17–20

Page 7 of 8

have much of an effect on the overall mix’s
cost could be because of the percussive nature
of the track. The vast majority of the energy
of the snare track comes from each hit, with
the energy rapidly decaying after the hit. The
hits occur relatively infrequently when
compared to a more continuous sound such as
the strumming of a guitar or a vocal melody.
Properly handling a sparse track such as this in
an automatic mixing task may require a track-
by-track evaluation and initialization before
the mixing takes place.

5. FUTURE WORK

The field of Music Information Retrieval has
developed a number of techniques that could
vastly improve the intuitiveness, efficiency,
and utility of recording software. A
framework for one application of this was
presented here. This system for the automatic
mixing of a multitrack recording combines a
MIR-derived timbral classification system
with a machine learning algorithm. The
automatic mixing system has been shown to
successfully recreate existing mixes under a
number of situations with varying degrees of
success; it remains to be seen what it will take
to extend this system to creating novel mixes
based on unknown targets.

This paper sought to shed light on the
promising integration of MIR and the
recording studio. It is the author’s hope that
this will lead to a more widespread effort
towards achieving a ‘smarter’ recording
studio. The development of an open file
format for recording session exchange and
libraries to support such a format across a
number of platforms would be helpful to both
the research community as well as software
companies that create professional recording
software. Furthermore, a collaborative

repository of multitrack recording sessions
would be of great use to all those who are
pursuing this line of research.

6. RESOURCES

All code developed for this research thus far
has been developed in MATLAB and is
available to download on the NYU Music
Technology Research website:

http://www.nyu.edu/projects/mtr/

The code used in this project requires both
Elias Pampalk’s MA Toolbox and Chris
Houck’s GAOT toolbox, both of which are
freely available for download online.

MA Toolbox: http://www.pampalk.at/ma/

GAOT:
http://www.ise.ncsu.edu/mirage/GAToolBox/g
aot/

7. ACKNOWLEDGEMENTS

The author would like to thank Dr. Juan Pablo
Bello for his immense help and guidance
throughout this project. The author would also
like to express his gratitude to Elias Pampalk
and Chris Houck for making their code
available and Ernest Li and Andy Saroff for
their ideas and support. This work was
supported by a Steinhardt Technology Award
from New York University.

8. REFERENCES

[1] Pampalk, Elias et al. “On the Evaluation
of Perceptual Similarity Measures for
Music.” Proceedings of the 6th
International Conference on Digital Audio
Effects (DAFx'03) 8 (2003).

Kolasinski Framework for Automatic Mixing

AES 124th Convention, Amsterdam, The Netherlands, 2008 May 17–20

Page 8 of 8

[2] Pampalk, Elias. "A Matlab Toolbox to
Compute Music Similarity from Audio."
(2004).

[3] Houck, Christopher et al. “A Genetic
Algorithm for Function Optimization: A
Matlab Implementation.” (1996).

[4] Horner, Andrew et al. “Machine Tongues
XVI: Genetic Algorithms and Their
Application to FM Matching Synthesis.”
Computer Music Journal 17.4 (2003): 17-
29.

[5] Tan, B.G. and Lim, S.M. “Automated
Parameter Optimization for Double
Frequency Modulation Synthesis Using the
Genetic Annealing Algorithm”. Journal of
the Audio Engineering Society 44.1/2
(1996): 3-15.

